The magsail was invented by Dana Andrews and I working in collaboration. What happened was this; Dana had an idea for a magnetic ramscoop that would gather interplanetary hydrogen and then feed it to a nuclear electric ion drive, thus avoiding the necessity of the p-p fusion reaction in the classic Bussard scoop. The problem was, according to Dana's rough back of the envelope calculations, he was getting more drag than thrust. Dana asked me to help him on it, hoping that a more expect calculation would give a more favorable result. I wrote a code and modeled the system as a Monte-Carlo problem, and discovered that Dana was wrong: he was not getting more drag than thrust, he was getting MUCH MUCH more drag than thrust. At that point I made the suggestion to Dana that we abandon the ion thruster and just use the collection device as a sail. He agreed. Based on the Monte Carlo results, we calculated total system drag and wrote a IAF paper in Oct. 1988 showing the value of the magsail as an interstellar drag device. Then, in early 1989 I derived a closed form analytic solution to the magsail drag problem, and also a set of equations governing magsail motion in the gravitational field of the Sun, and published this together with some mission analysis by Dana as a AIAA paper in July 1989 (republished in referred form in Journal of Spacecraft and Rockets, March-April 1991).
He calculates that this stuff is everywhere, left over from the Big Bang. There must be tons and tons of it, because it causes Dark Matter gravity. The point being it should be readily available in our own solar system. Now due to the incredible density of quark nuggets, it is all going to be at the core of various solar system objects. We won't be able to mine any at the core of Sol, the planets, or the moons, but asteroids are a different mattter. Eubanks notes there do exist so-called Very Fast Rotating asteroids, the little whirling dervishes have rotation periods measured in tens of seconds. This is consistent with strange matter asteroids with core masses between 1010 and 1011 kilograms (50 million metric tons). The cores can be extracted and used (but alas cannot be subdivided, the mutual attraction is too strong). The cores will typically be about one millimeter in radius.
Solar System Simulator to Calculate Interplanetary, Interlunar, Interstellar Transfers
Download Zip: https://gohhs.com/2vGDJ4
At the end of the cruise phase, with nearly half of the ship's fuel exhausted, empty fuel tanks can be ground up into ultrafine dust, for dumping overboard (we see no reason to expend extra energy decelerating tons of equipment, no longer in use, which can easily be remanufactured and replaced at the destination solar system). At up to ninety-two percent the speed of light, the dust will fly ahead of the decelerating ship, exploding interstellar particles and clearing a temporary path (trajectories must be such that the relativistic dust will fly out of the galaxy without passing near stars and detonating in the atmospheres of planets). This fist of relativistic dust is the first line of defense against particles encountered during final approach. With the rear engine firing into the direction of flight, droplet shields will be come useful only for expelling heat from the rear engine, for along the tether, "up" has now become "down," and droplets can only be sprayed "up" behind the engine, where, traveling at uniform speed, they will fall back upon the decelerating ship. To shield against particles ahead of the ship, ultrathin "umbrellas" made of organic polymers similar to Mylar and stacked thousands of layers deep are lowered into the direction of flight. This is the second line of defense - against particles moving into the ever-lengthening space between the ship and the fist. The umbrellas will behave much like the droplet shield and, in like fashion, they will be designed with rapid self-repair in mind. Throughout the ship, repair and restructuring will be assisted (where such repair abilities as self-annealing filaments are not already built into ship components) by small, mouselike robots capable of climbing up and down tethers and rigging. 2ff7e9595c
Comments